

20 April 2021

The General Manager Yass Valley Council PO Box 6 YASS NSW 2582

Attention: Arif Chohan

Dear Arif,

Additional Traffic Modelling Data

Further to the Traffic Impact Assessment (TIA) submitted with our planning proposal application, we have undertaken the following additional work in support of our application:

- 1. Matrix Traffic and Transport Data have undertaken an updated traffic count for Yass Valley Way for the AM and PM peak periods;
- 2. Traffic Engineering Centre have undertaken SIDRA intersection modelling utilising the updated peak hour traffic volumes for Yass Valley Way projected forward to 2030, and the estimated traffic generation for the 2030 scenario as presented in the TIA.

The results of the above studies have been attached and show that the proposed single access point to Yass Valley Way will have sufficient capacity to cater for the development and will operate with an overall Level of Service B which is categorised as *"acceptable delays and spare capacity"*.

Yours Sincerely

Simon Cassidy CPEng, NER

SIDRA Modelling of the proposed Yass Valley Way / New Subdivision Road intersection, in Yass, NSW

March 2021

Genium Civil Engineering

Traffic Engineering Centre

Our clients are our partners

Traffic Engineering Centre Pty Ltd ABN 81 153 403 199

Suite 8, 2 Kochia Lane Lindfield NSW 2070 PO Box 261 Lindfield NSW 2070 Australia Telephone +61 2 9880 7606 Mobile +61 (0)424 277 612 Email zoran@trafficengineeringcentre.com Website www.trafficengineeringcentre.com

Traffic Engineering Centre

Our clients are our partners

Revision	Details	Date	Amended by

©Traffic Engineering Centre Pty Ltd [2021].

Copyright in the drawings, information and data recorded in this document is the property of Traffic Engineering Centre. This document and the information are solely for the use of the authorised recipient and this document may not be used, copied or reproduced in whole or part for any purpose other than that for which it was supplied by Traffic Engineering Centre. Traffic Engineering Centre makes no representation, undertakes no duty and accepts no responsibility to any third party who may use or rely upon this document or the information.

Distribution: Genium Civil Engineering, Traffic Engineering Centre (file)

Contents

Page number

1.	Introduction							
	1.1	2030 Ve	hicular traffic volumes	4				
2.	Inte	5						
	2.1	2.1 SIDRA model and its performance indicators						
	2.2	2.1.1 2.1.2 2.1.3 2.1.4 Summar	Level of Service (LOS) Degree of Saturation (DoS) Delay Queue length y SIDRA Assessment Results	5 5 6 7				
		2.2.1 2.2.2	2030 AM Peak hour 2030 PM Peak hour	7 9				

Appendices

Appendix A SIDRA results

1. Introduction

Traffic Engineering Centre was commissioned by Genium Civil Engineering to undertake a Traffic Impact Assessment using the SIDRA intersection modelling software package to assess performance in the year 2030 of the proposed new intersection of Yass Valley Way and New Subdivisional Road, in Yass, NSW.

1.1 2030 Vehicular traffic volumes

Genium Civil Engineering has supplied Traffic Engineering Centre with predicted vehicular traffic volumes, for the Year 2030, for both AM and PM peak hours (refer to Figure 3.1 & 3.2, respectively).

Figure 1.1: 2030 AM Peak hour traffic volumes (Source: Genium Civil Engineering)

Figure 1.2: 2030 PM Peak hour traffic volumes (Source: Genium Civil Engineering)

2. Intersection performance

2.1 SIDRA model and its performance indicators

The SIDRA package provides several useful indicators that describe intersection performance. This report has used four typical performance indicators as listed and described below:

- level of service (LoS)
- degree of saturation (DoS)
- average intersection delay, and
- queue length.

Level of Service (LOS)

LoS is a basic performance parameter used to describe the operation of an intersection. Levels of service range from A (indicating good intersection operation) to F (indicating over saturated conditions with long delays and queues). At signalised intersections, the LoS criteria are related to average intersection delay (seconds per vehicle). At priority controlled (give-way and stop controlled) and roundabout intersections, the LoS is based on the modelled delay (seconds per vehicle) for the most delayed movement (refer to Table 2.1). The Roads and Maritime Service typically consider a LoS D or better acceptable on most urban roads.

Level of service	Average delay (seconds per vehicle)	Traffic signals, Roundabout	Priority Intersection ('Stop' and 'Give Way')
А	Less than 14	Good operation	Good operation
В	15 to 28	Good with acceptable delays and spare capacity	Acceptable delays and spare capacity
С	29 to 42	Satisfactory	Satisfactory, but accident study required
D	43 to 56	Operating near capacity	Near capacity and accident study required
E	57 to 70	At capacity. At signals, incidents will cause excessive delays. Roundabouts require other control mode	At capacity; requires other control mode
F	Greater than 71	Unsatisfactory with excessive queuing	Unsatisfactory with excessive queuing; requires other control mode

Table 2.1: Levels of Service

Source: RMS Guide to Traffic Generating Developments

Degree of Saturation (DoS)

DoS is the ratio of demand flow to capacity, and therefore has no unit. As it approaches 1.0, extensive queues and delays could be expected. For a satisfactory situation, DoS should be less than the nominated practical degree of saturation, usually 0.9. The intersection DoS is based on the movement with the highest value.

Delay

Delay is the difference between interrupted and uninterrupted travel times through the intersection and is measured in seconds per vehicle. At signalised intersections and roundabouts, the average intersection delay is usually reported. At priority controlled intersections, the average delay for the most delayed movement is usually reported.

Queue length

Queue length is directly related to the number of vehicles waiting at the stop line and is usually quoted as the 95th percentile back of queue, which is the value below which 95% of all observed queue lengths fall. It is measured as the length occupied by the vehicles per traffic lane at the start of the green period, when traffic starts moving again after a red signal. The intersection queue length is usually taken from the movement with the longest queue length.

2.2 Summary SIDRA Assessment Results

2.2.1 2030 AM Peak hour

Figure 2.1 shows the proposed intersection layout, the SIDRA modelling [performance] results for the 2030 AM peak hour, are presented in Tables 2.1.

Figure 2.1: The intersection layout (Source: SIDRA)

The results clearly indicate that, more likely than not, in 2030 AM Peak hour, the intersection would operate at an excellent [overall] excellent **Level of Service** of **A**.

The intersection would be functioning well within its designed capacity, during the 2030 AM peak hour, indicating sufficient spare capacity during the peak hour to accommodate any increase in the future traffic without affecting overall intersection performance.

The intersection is also seeming to be very well balanced, not experiencing long **delays** and/or **queues**.

More likely than not, the **maximum 95th percentile queue length** of only 2.0m would occur on New Development Road, while no queue would occur on Yass Valley Way, on either approach to the intersection.

The SIDRA modelling results suggest that, more likely than not, average delay of only 8.4s and 7.8s would be experienced by the traffic on Yass Valley Way (West) and Yass Valley Way (East) approach to the intersection, respectively, while the maximum average delay on New Development Road is likely to be 14.3s.

Approach and directio	Degree of Saturation (v/c)	Average Delay (sec/veh)	Level of Service (LOS)	95% Back of Queue (m)	
Yass Valley Way (West)	т	0.315	0.0	A	0
	R	0.315	8.4	A	0
New Development Road	L	0.077	9.3	А	2
	R	0.077	14.3	В	2
Yass Valley Way (East)	Т	0.112	0.0	A	0
	L	0.112	7.8	А	0

Table 2.2: 2030 AM Peak hour – intersection performance results

2.2.2 2030 PM Peak hour

The results clearly indicate that, more likely than not, in 2030 AM peak hour, the intersection would operate at an good [overall] **Level of Service**.

The intersection would be functioning well within its designed capacity, during the 2030 AM peak hour, indicating sufficient spare capacity during the peak hour to accommodate any increase in the future traffic without affecting overall intersection performance.

The intersection is also seeming to be very well balanced, not experiencing long **delays** and/or **queues**.

More likely than not, the **maximum 95th percentile queue length** of only 2.0m would occur on Yass Valley Way (West), while no queue would be unlikely to occur on New Development Road, and Yass Valley Way (East).

The SIDRA modelling results suggest that, more likely than not, average delay of only 11.6s and 7.9s would be experienced by the traffic on Yass Valley Way (West) and Yass Valley Way (East) approach to the intersection, respectively, while the maximum average delay on New Development Road is likely to be 17.0s.

Approach and directio	Degree of Saturation (v/c)	Average Delay (sec/veh)	Level of Service (LOS)	95% Back of Queue (m)	
Yass Valley Way (West)	т	0.189	0.4	А	2.1
	R	0.189	11.6	В	2.1
New Development Road	L	0.005	12.3	В	0.1
	R	0.005	17.0	С	0.1
Yass Valley Way (East)	т	0.366	0.0	А	0.0
	L	0.366	7.9	A	0.0

Table 2.2: 2030 PM Peak hour – intersection performance results

Appendix A

SIDRA results

2030 AM Peak

Figure 1.2: Level of Service (LOS) – 2030 AM Peak hour

Figure 1.3: Degree of Saturation (DOS) – 2030 AM Peak hour

Figure 1.4: 95%-ille Queuing Distance – 2030 AM Peak hour

Traffic Engineering Centre

Our clients are our partners

Figure 1.5: Delay – 2030 AM Peak hour

MOVEMENT SUMMARY

🚳 Site: 101 [2030 AM Peak 'STOP' Yass Valley Way - New Subdivision Road (Site Folder: General)]

Yass Valley Way - New Subdivision Road Site Category: (None) Stop (Two-Way)

Vehicle Mov	Vehicle Movement Performance													
Mov	Turn	INPUT V	DLUMES	DEMAND	FLOWS	Deg.	Aver.	Level of	95% BACK	OF QUEUE	Prop.	Effective	Aver. No.	Aver.
ID		[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
Cauthy Many Co	dediciei en Deed	ven/h	76	ven/n	70	V/C	sec		ven	m				Km/n
South: New Subarivision Road														
1	L2	17	0.0	18	0.0	0.077	9.3	LOS A	0.3	1.8	0.44	0.93	0.44	57.6
3	R2	25	0.0	26	0.0	0.077	14.3	LOS B	0.3	1.8	0.44	0.93	0.44	57.2
Approach		42	0.0	44	0.0	0.077	12.3	LOS B	0.3	1.8	0.44	0.93	0.44	57.4
East: Yass Val	ley Way (East)													
4	L2	1	0.0	1	0.0	0.112	7.8	LOS A	0.0	0.0	0.00	0.00	0.00	80.5
5	T1	194	10.3	204	10.3	0.112	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	99.8
Approach		195	10.2	205	10.2	0.112	0.0	NA	0.0	0.0	0.00	0.00	0.00	99.7
West: Yass Va	lley Way (West)													
11	T1	558	6.5	587	6.5	0.315	0.0	LOS A	0.0	0.1	0.00	0.00	0.00	99.9
12	R2	1	0.0	1	0.0	0.315	8.4	LOS A	0.0	0.1	0.00	0.00	0.00	80.4
Approach		559	6.5	588	6.5	0.315	0.0	NA	0.0	0.1	0.00	0.00	0.00	99.9
All Vehicles		796	7.1	838	7.1	0.315	0.7	NA	0.3	1.8	0.02	0.05	0.02	97.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TRAFFIC ENGINEERING CENTRE PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 18 March 2021 4:34:23 PM Project: D:Back up 2015.08.31/2021-PR-08-0418 SIDRA Yass Genuin Civil\4. SIDRA modelling\Yass Valley Road New Subdivision Road intersection 2030.sip0

C:\DROPBOX (GENIUM)\PROJECTS\2017\17037 - ICETON PLACE SUBDIVISION\OTHER FILES\TRAFFIC COUNTS\SIDRA RESULTS\2021-PR-08-0418 - REPORT SIDRA MODELLING -

Our clients are our partners

INTERSECTION SUMMARY

Disite: 101 [2030 AM Peak 'STOP' Yass Valley Way - New Subdivision Road (Site Folder: General)]

Yass Valley Way - New Subdivision Road Site Category: (None) Stop (Two-Way)

ntersection Performance - Hourty Values							
Performance Measure	Vehicles	Persons					
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed (Program) Speed Efficiency Travel Time Index Congestion Coefficient	97.1 km/h 832.5 veh-km/h 8.6 veh-h/h 99.5 km/h 0.98 9.74 1.02	97.1 km/h 999.0 pers-km/h 10.3 pers-h/h					
Demand Flows (Total) Percent Heavy Vehicles (Demand) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	838 veh/h 7.1 % 0.315 211.5 % 2663 veh/h	1005 pers/h					
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average) Iding Time (Average) Intersection Level of Service (LOS)	0.16 veh-h/h 0.7 sec 12.3 sec 14.3 sec 0.4 sec 0.2 sec 0.2 sec NA	0.19 pers-h/h 0.7 sec 14.3 sec					
95% Back of Queue - Vehicles (Worst Lane) 95% Back of Queue - Distance (Worst Lane) Ave. Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	0.3 veh 1.8 m 0.00 42 veh/h 0.05 0.02 9.1	51 pers/h 0.05 0.02 9.1					
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monxide (Total) NOx (Total)	459.00 S/h 77.8 L/h 186.3 kg/h 0.023 kg/h 0.512 kg/h 0.375 kg/h	459.00 S/h					

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Site Model Variability Index (Iterations 3 to N): 0.0 %

Number of Iterations: 2 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 0.0% 69.1% 0.0%

Intersection Performance - Annual Values

Performance Measure

Vehicles

Persons

2030 PM Peak

SITE LAYOUT Site: 101 [2030 PM Peak 'STOP' Yass Valley Way - New Subdivision Road (Site Folder: General)] Yass Valley Way - New Subdivision Road Site Category: (None) Stop (Two-Way) Layout pictures are schematic functional drawings reflecting input data. They are not design drawings. N Yass Valley Way (West) Taylor Taylor

C:\DROPBOX (GENIUM)\PROJECTS\2017\17037 - ICETON PLACE SUBDIVISION\OTHER FILES\TRAFFIC COUNTS\SIDRA RESULTS\2021-PR-08-0418 - REPORT SIDRA MODELLING - COMBINED.DOCX

Figure 1.2: Level of Service (LOS) – 2030 PM Peak hour

Figure 1.3: Degree of Saturation (DOS) – 2030 PM Peak hour

Figure 1.5: Delay – 2030 PM Peak hour

MOVEMENT SUMMARY

🚳 Site: 101 [2030 PM Peak 'STOP' Yass Valley Way - New Subdivision Road (Site Folder: General)]

Yass Valley Way - New Subdivision Road Site Category: (None) Stop (Two-Way)

Vehicle Mover	vehicle Movement Performance													
Mov	Turn		DLUMES	DEMAND	FLOWS	Deg.	Aver.	Level of	95% BACK		Prop.	Effective	Aver. No.	Aver.
U		l lotai veh/h	۳۷ J %	veh/h	пv ј %	saun v/c	sec	Service	l ven. veh	Dist j m	Que	Stop Rate	Cycles	speed km/h
South: New Development Road														
1	L2	1	0.0	1	0.0	0.005	12.3	LOS B	0.0	0.1	0.66	0.87	0.66	55.2
3	R2	1	0.0	1	0.0	0.005	17.0	LOS C	0.0	0.1	0.66	0.87	0.66	54.8
Approach		2	0.0	2	0.0	0.005	14.7	LOS B	0.0	0.1	0.66	0.87	0.66	55.0
East: Yass Valle	y Way (East)													
4	L2	26	0.0	27	0.0	0.366	7.9	LOS A	0.0	0.0	0.00	0.03	0.00	79.7
5	T1	610	10.3	642	10.3	0.366	0.0	LOS A	0.0	0.0	0.00	0.03	0.00	98.8
Approach		636	9.9	669	9.9	0.366	0.4	NA	0.0	0.0	0.00	0.03	0.00	98.1
West: Yass Valle	ey Way (West)													
11	T1	296	6.5	312	6.5	0.189	0.4	LOS A	0.3	2.1	0.10	0.04	0.10	97.1
12	R2	17	0.0	18	0.0	0.189	11.6	LOS B	0.3	2.1	0.10	0.04	0.10	77.8
Approach		313	6.1	329	6.1	0.189	1.0	NA	0.3	2.1	0.10	0.04	0.10	96.2
All Vehicles		951	8.6	1001	8.6	0.366	0.6	NA	0.3	2.1	0.04	0.03	0.04	97.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

INTERSECTION SUMMARY

🚳 Site: 101 [2030 PM Peak 'STOP' Yass Valley Way - New Subdivision Road (Site Folder: General)]

Yass Valley Way - New Subdivision Road Site Category: (None) Stop (Two-Way)

Intersection Performance - Hourly Values		
Performance Measure	Vehicles	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed (Program) Speed Efficiency Travel Time Index Congestion Coefficient	97.4 km/h 997.0 veh-km/h 10.2 veh-h/h 99.6 km/h 0.98 9.75 1.02	97.4 km/h 1196.4 pers-km/h 12.3 pers-h/h
Demand Flows (Total) Percent Heavy Vehicles (Demand) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	1001 veh/h 8.6 % 0.366 167.7 % 2735 veh/h	1201 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average) Iding Time (Average) Intersection Level of Service (LOS)	0.17 veh-h/h 0.6 sec 14.7 sec 17.0 sec 0.4 sec 0.3 sec 0.0 sec NA	0.21 pers-h/h 0.6 sec 17.0 sec
95% Back of Queue - Vehicles (Worst Lane) 95% Back of Queue - Distance (Worst Lane) Ave. Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	0.3 veh 2.1 m 0.00 34 veh/h 0.03 0.04 10.7	40 pers/h 0.03 0.04 10.7
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	559.85 \$/h 98.1 L/h 235.6 kg/h 0.028 kg/h 0.603 kg/h 0.558 kg/h	559.85 S/h

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Site Model Variability Index (Iterations 3 to N): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 77.8% 6.5% 0.0%

Intersection Performance - Annual Values

C:\DROPBOX (GENIUM)\PROJECTS\2017\17037 - ICETON PLACE SUBDIVISION\OTHER FILES\TRAFFIC COUNTS\SIDRA RESULTS\2021-PR-08-0418 - REPORT SIDRA MODELLING -

Yass Valley Way - March 2021 Peak Hour Counts

Job No.	: A132
Client	: Genium
Suburb	: Yass Valley Way
Location	: 1. Yass Valley Way
Day/Date	: Wed, 3rd March 2021
Weather	: Fine
Description	: Mid-block Count
	: Peak Hour Summary

	Ap	proa	ich	w	est Bou	nd	Ea	nd	otal	
	Tim	e Pe	riod	Lights	Heavies	Total	Lights	Heavies	Total	Grand To
АМ	7:00	to	8:00	139	16	155	418	29	447	602
РМ	16:45	to	17:45	466	22	488	229	8	237	725

Ap	proa	ch	w	est Bou	nd	Ea	ast Boui	nd	otal
Tim	e Pei	riod	Lights	Heavies	Total	Lights	Heavies	Total	Grand To
6:30	to	7:30	86	15	101	405	34	439	540
6:45	to	7:45	95	12	107	416	35	451	558
7:00	to	8:00	139	16	155	418	29	447	602
7:15	to	8:15	181	15	196	366	23	389	585
7:30	to	8:30	226	20	246	328	10	338	584
7:45	to	8:45	275	23	298	294	6	300	598
8:00	to	9:00	275	21	296	253	7	260	556
8:15	to	9:15	257	19	276	258	9	267	543
8:30	to	9:30	222	17	239	253	9	262	501
AN	1 Tot	als	534	52	586	986	53	1,039	1,625
15:30	to	16:30	348	16	364	244	15	259	623
15:45	to	16:45	368	20	388	244	12	256	644
16:00	to	17:00	389	24	413	242	5	247	660
16:15	to	17:15	419	28	447	241	10	251	698
16:30	to	17:30	432	30	462	236	8	244	706
16:45	to	17:45	466	22	488	229	8	237	725
17:00	to	18:00	470	22	492	221	9	230	722
17:15	to	18:15	445	20	465	210	4	214	679
17:30	to	18:30	400	13	413	172	5	177	590
PN	1 Tot	als	1,180	59	1,239	652	28	680	1,919

Yass Valley Way – Projected 2030 Peak Hour Counts

Job No. Client	: A132 : Genium				
Location	: Yass Valley Way : 1. Yass Valley Way				
Day/Date Weather Description	Estimated 2030 Volumes : Fine : Mid-block Count : Peak Hour Summary				

	Ap	proa	ich	West Bound			Ea	otal		
	Tim	e Pei	riod	Lights	Heavies	Total	Lights	Heavies	Total	Grand T
AM	7:00	to	8:00	174	20	194	522	36	558	752
PM	16:45	to	17:45	582	27	610	286	10	296	906

Approach			w	est Bou	nd	Ea	otal		
Tim	e Pei	riod	Lights	Heavies	Total	Lights	Heavies	Total	Grand To
6:30	to	7:30	107	19	126	506	42	548	674
6:45	to	7:45	119	15	134	520	44	563	697
7:00	to	8:00	174	20	194	522	36	558	752
7:15	to	8:15	226	19	245	457	29	486	731
7:30	to	8:30	282	25	307	410	12	422	729
7:45	to	8:45	343	29	372	367	7	375	747
8:00	to	9:00	343	26	370	316	9	325	694
8:15	to	9:15	321	24	345	322	11	333	678
8:30	to	9:30	277	21	299	316	11	327	626
AN	AM Totals			65	732	1,232	66	1,298	2,030
15:30	to	16:30	435	20	455	305	19	323	778
15:45	to	16:45	460	25	485	305	15	320	804
16:00	to	17:00	486	30	516	302	6	309	824
16:15	to	17:15	523	35	558	301	12	313	872
16:30	to	17:30	540	37	577	295	10	305	882
16:45	to	17:45	582	27	610	286	10	296	906
17:00	to	18:00	587	27	615	276	11	287	902
17:15	to	18:15	556	25	581	262	5	267	848
17:30	to	18:30	500	16	516	215	6	221	737
PM Totals			1,474	74	1,548	814	35	849	2,397

